
Artificial Intelligence
CE-417, Group 1

Computer Eng. Department
Sharif University of Technology

Spring 2024

By Mohammad Hossein Rohban, Ph.D.

Courtesy: Most slides are adopted from CSE-573 (Washington U.), original 
slides for the textbook, and CS-188 (UC. Berkeley). 

1



Problem Space and Uninformed Search

2



Problem solving agents

• On holiday in Romania; currently in Arad. 

Flight leaves tomorrow from Bucharest 

• Formulate goal: be in Bucharest 

• Formulate problem:

• states: various cities 

• actions: drive between cities 

• Find solution: sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest 

3



Problem solving agents (cont.)

4



Another example: vacuum world 

• States: integer dirt and robot locations (ignore dirt amounts etc.) 

• Actions: Left, Right, Suck, NoOp

• Goal test: no dirt

• Path cost: 1 per action (0 for NoOp) 5



Another example: The 8-puzzle 

• States: integer locations of tiles (ignore intermediate positions) 

• Actions: move blank left, right, up, down (ignore unjamming etc.) 

• Goal test: = goal state (given)

• Path cost: 1 per move 

• [Note: optimal solution of n-Puzzle family is NP-hard] 
6



Tree Search Algorithms

• Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states 

(a.k.a. expanding states) 

7



Search Tree Example

8



Search Tree

• A search tree:

• Start state at the root node

• Children correspond to successors

• Nodes contain states, correspond to PLANS to those states

• Edges are labeled with actions and costs

• For most problems, we can never actually build the whole tree 

9



States vs. Nodes
• Vertices in state space graphs are problem states

• Represent an abstracted state of the world

• Have successors, can be goal / non-goal, have multiple predecessors 

• Vertices in search trees (“Nodes”) are plans

• Contain a problem state and one parent, a path length, a depth, and a cost

• Represent a plan (sequence of actions) which results in the node’s state

• The same problem state may be achieved by multiple search tree nodes 

10



Search Strategies

• A strategy is defined by picking the order of node expansion 

• Strategies are evaluated along the following dimensions: 

• completeness: does it always find a solution if one exists? 

• time complexity: number of nodes generated/expanded 

• space complexity: maximum number of nodes in memory 

• optimality: does it always find a least-cost solution? 

• Time and space complexity are measured in terms of 
• b: maximum branching factor of the search tree 

• d: depth of the least-cost solution

• m: maximum depth of the state space (may be ∞) 
11



Search Strategies

• Uninformed strategies use only the information available in the problem 
definition 

• Breadth-first search 

• Uniform-cost search 

• Depth-first search 

• Depth-limited search 

• Iterative deepening search 

12



Breadth-first search 

• Expand shallowest unexpanded node 

13



Properties of breadth-first search 

• Complete: 
• Yes (if b is finite)

• Time: 
• 1+b+b2+b3+...+bd+b(bd−1)=O(bd+1), i.e. exp. in d 

• Space: 
• O(bd+1) (keeps every node in memory)

• Optimal: 
• Yes (if cost = 1 per step); not optimal in general 

• Space is the big problem; can easily generate nodes at 100MB/sec so 24hrs 
= 8640GB. 14



Costs on Actions 

• Objective: Path with smallest overall cost

• BFS will return shortest path in terms of number of transitions

• It doesn’t find the least cost path. 

15



Best-first search

• Generalization of breadth-first search

• Cost function f(n) applied to each node 

• Breadth-first search : f(n) = depth(n)

• Dijkstra’s Algorithm (Uniform cost) : f(n) = the sum of edge costs from start to n 

16



Uniform Cost Search
• Best first, where

f(n) = “cost from start to n” 

17aka “Dijkstra’s Algorithm” 



Uniform Cost Search (cont.)

18



Uniform-cost search 
• Complete: 

• Yes, if step cost ≥ ε

• Time: 
• # of nodes with f ≤ cost of optimal solution, O(b⌈C∗/ε⌉) where C∗ is the cost of the 

optimal solution 

• Space: 

• # of nodes with f ≤ cost of optimal solution, O(b⌈C∗/ε⌉) 

• Optimal: 
• Yes—nodes expanded in increasing order of f(n) 

• Caveat: Explores options in every “direction” (No information about goal 
location) 19



Uniform-cost search (cont.)

20



Depth-first search

• Expand deepest unexpanded node 

21



Properties of depth-first search 
• Complete: 

• No: fails in infinite-depth spaces, spaces with loops. Modify to avoid repeated states 
along path 

• ⇒ complete in finite spaces

• Time: 
• O(bm): terrible if m is much larger than d

• but if solutions are dense, may be much faster than breadth-first 

• Space: 
• O(bm), i.e., linear space!

• Optimal: 
• No 

22



Combining BFS and DFS?

• DFS is efficient in space complexity

• BFS is better in time complexity

• How can we combine strength of both in a method?

23



Depth-limited search 

= depth-first search with depth limit l, i.e., nodes at depth l have no successors 

24



Iterative deepening search (cont.) 

• Gradually increasing the limit in depth-limited search, until the solution is 
found:

25



Iterative deepening search (cont.)

26



Properties of iterative deepening search 
• Complete:

• Yes 

• Time: 
• (d+1)b0 +db1 +(d−1)b2 +...+bd =O(bd) 

• or more precisely O(bd(1 – 1/b)-2)

• Space:

• O(bd) 

• Optimal: 
• Yes, if step cost = 1

• Can be modified to explore uniform-cost tree 
27



Properties of iterative deepening search (cont.) 

• Numerical comparison for b = 10 and d = 5, solution at far right leaf: 

N(IDS) = 6+50+400+3,000+20,000+100,000=123,456 

N(BFS) = 10+100+1,000+10,000+100,000+999,990=1,111,100

• IDS does better because other nodes at depth d are not expanded 

• BFS can be modified to apply goal test when a node is generated

28



Cost of iterative deepening

29



Speed on various benchmarks

30



Summary of algorithms 

31



Repeated states 

• Failure to detect repeated states can turn a linear problem into an exponential 
one! 

32



Graph Search

33



Graph Search (cont.)

• On small problems

• Graph search almost always better than tree search 

• Implement your closed list as a dict. or set! 

• On many real problems
• Storage space is a huge concern. 

• Graph search impractical 

34


