Artificial Intelligence CE-417, Group 1 Computer Eng. Department Sharif University of Technology

Spring 2024

By Mohammad Hossein Rohban, Ph.D.

Courtesy: Most slides are adopted from CSE-573 (Washington U.), original slides for the textbook, and CS-188 (UC. Berkeley).

Problem Space and Uninformed Search

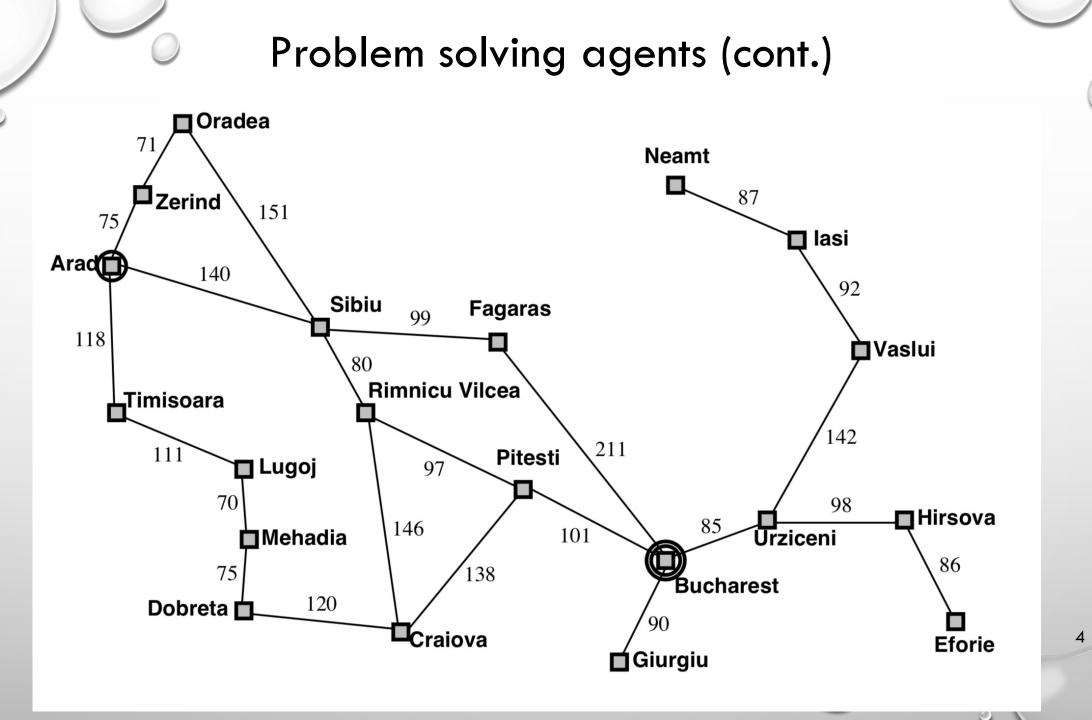
Problem solving agents

3

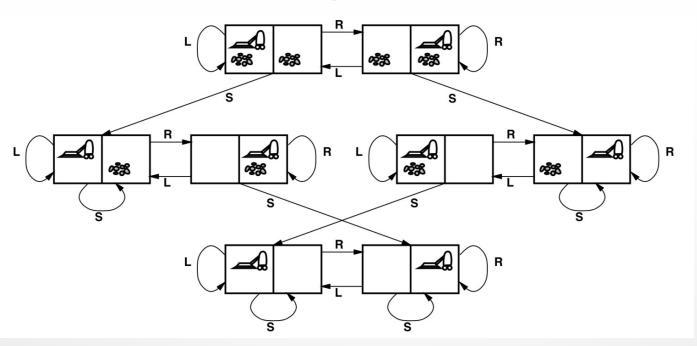
• On holiday in Romania; currently in Arad.

Flight leaves tomorrow from Bucharest

- Formulate goal: be in Bucharest
- Formulate problem:
 - states: various cities
 - actions: drive between cities
- Find solution: sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

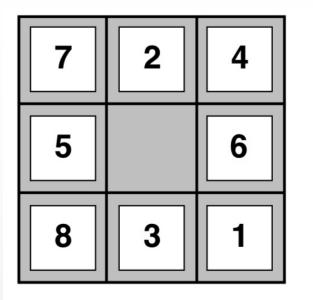


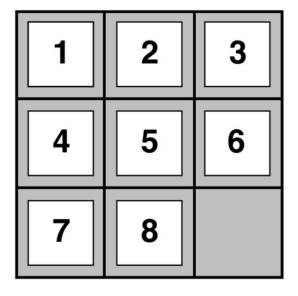
Another example: vacuum world



- States: integer dirt and robot locations (ignore dirt amounts etc.)
- Actions: Left, Right, Suck, NoOp
- Goal test: no dirt
- Path cost: 1 per action (0 for NoOp)

Another example: The 8-puzzle





Start State

Goal State

- States: integer locations of tiles (ignore intermediate positions)
- Actions: move blank left, right, up, down (ignore unjamming etc.)
- Goal test: = goal state (given)
- Path cost: 1 per move
- [Note: optimal solution of n-Puzzle family is NP-hard]

Tree Search Algorithms

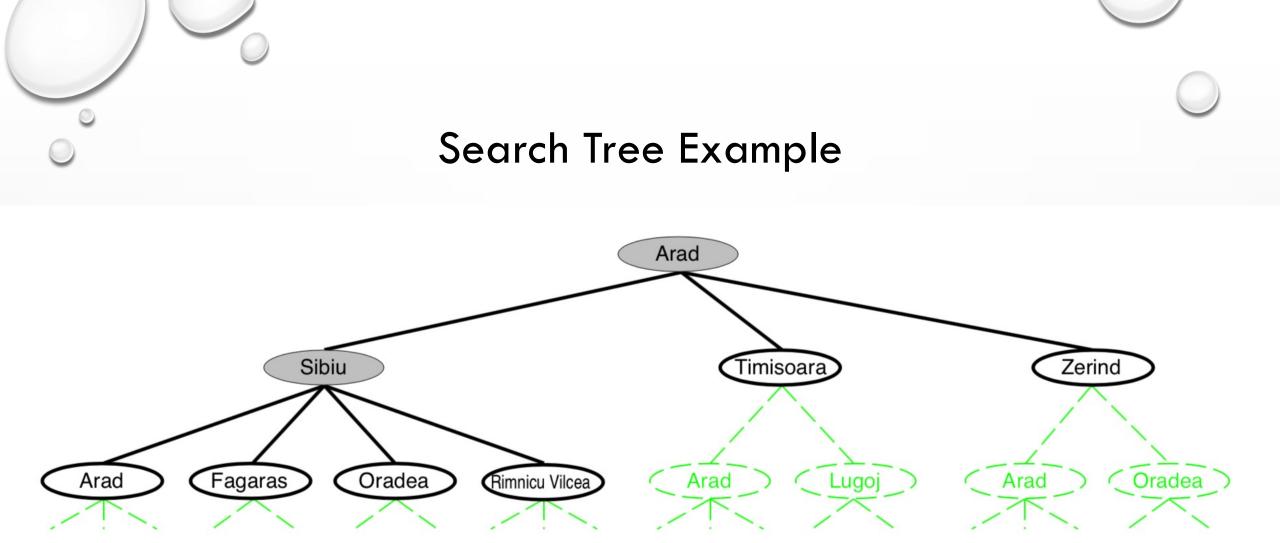
Basic idea:

offline, simulated exploration of state space

by generating successors of already-explored states

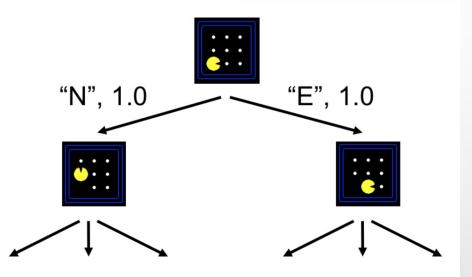
(a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end



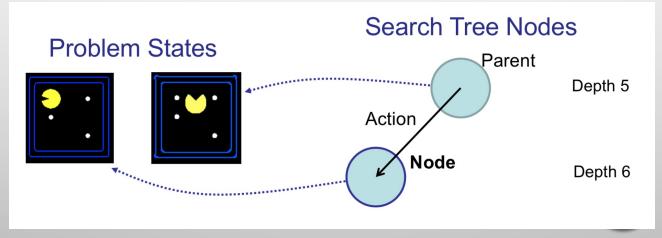
Search Tree

- A search tree:
 - Start state at the root node
 - Children correspond to successors
 - Nodes contain states, correspond to PLANS to those states
 - Edges are labeled with actions and costs
 - For most problems, we can never actually build the whole tree



States vs. Nodes

- Vertices in state space graphs are problem states
- Represent an abstracted state of the world
- Have successors, can be goal / non-goal, have multiple predecessors
- Vertices in search trees ("Nodes") are plans
- Contain a problem state and one parent, a path length, a depth, and a cost
- Represent a plan (sequence of actions) which results in the node's state
- The same problem state may be achieved by multiple search tree nodes



Search Strategies

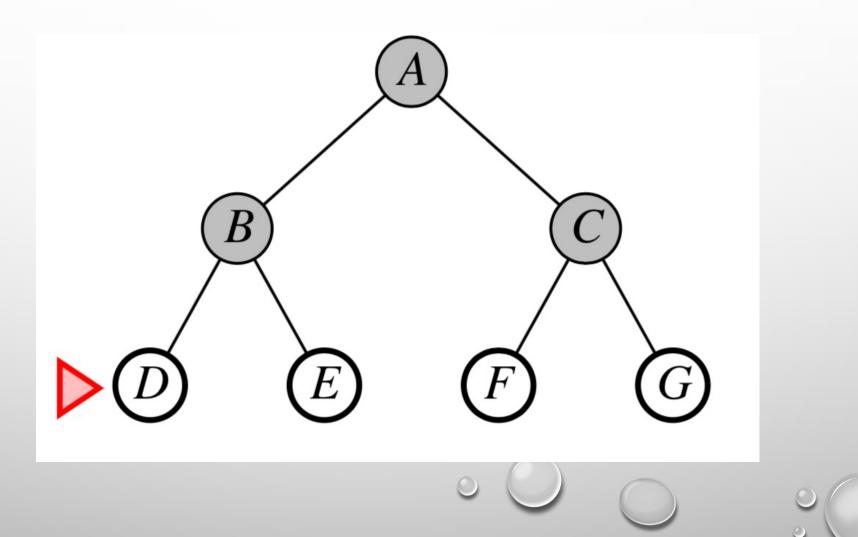
- A strategy is defined by picking the order of node expansion
 - Strategies are evaluated along the following dimensions:
 - completeness: does it always find a solution if one exists?
 - time complexity: number of nodes generated/expanded
 - **space complexity:** maximum number of nodes in memory
 - optimality: does it always find a least-cost solution?
 - Time and space complexity are measured in terms of
 - **b**: maximum branching factor of the search tree
 - d: depth of the least-cost solution
 - *m*: maximum depth of the state space (may be ∞)

Search Strategies

- Uninformed strategies use only the information available in the problem definition
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening search

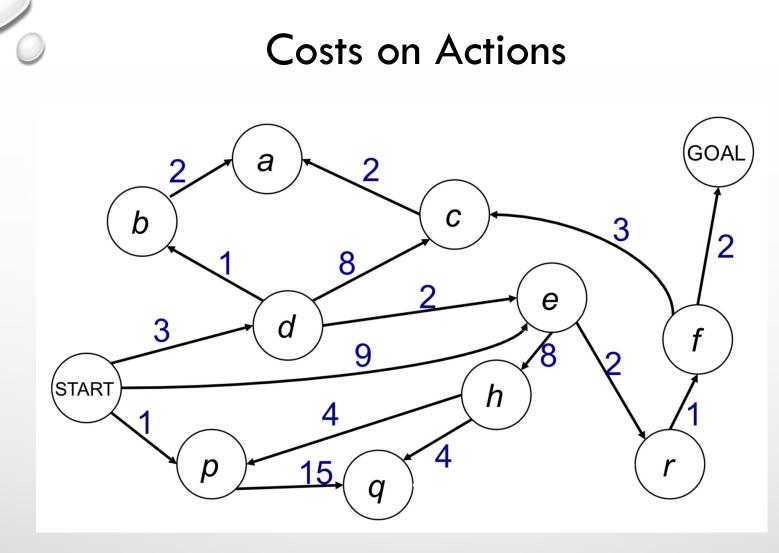
Breadth-first search

• Expand shallowest unexpanded node



Properties of breadth-first search

- Complete:
 - Yes (if b is finite)
- Time:
 - $1+b+b^2+b^3+...+b^d+b(b^d-1)=O(b^{d+1})$, i.e. exp. in d
- Space:
 - O(b^{d+1}) (keeps every node in memory)
- Optimal:
 - Yes (if cost = 1 per step); not optimal in general
- Space is the big problem; can easily generate nodes at 100MB/sec so 24hrs
 = 8640GB.

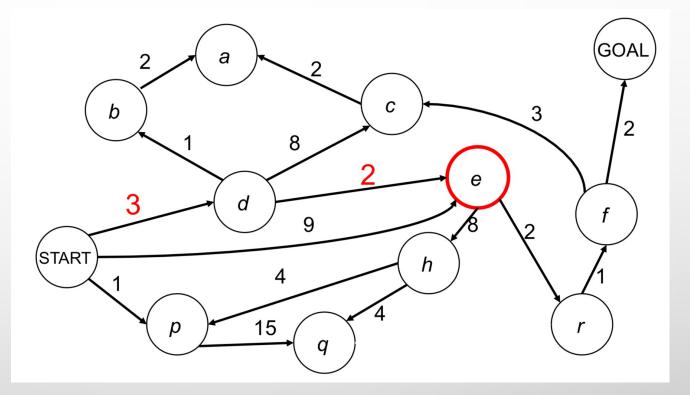


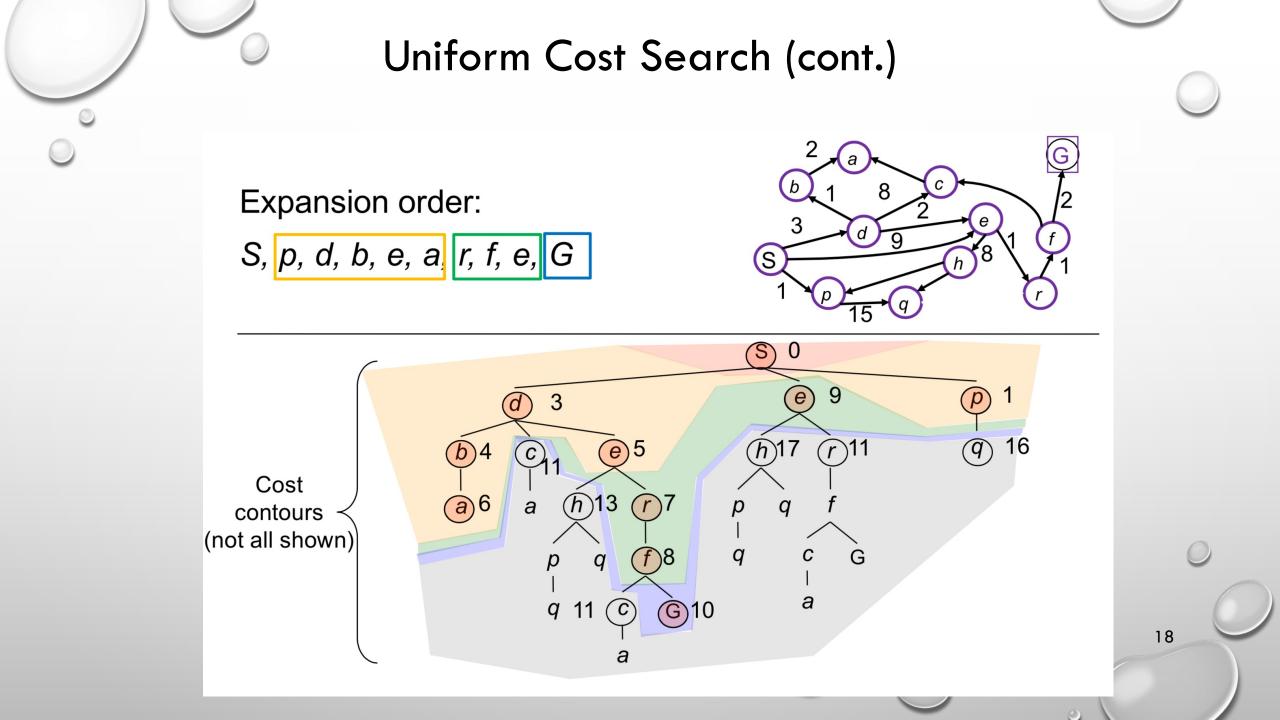
- Objective: Path with smallest overall cost
- BFS will return shortest path in terms of number of transitions
 - It doesn't find the least cost path.

- Generalization of breadth-first search
- Cost function f(n) applied to each node
 - Breadth-first search : f(n) = depth(n)
 - Dijkstra's Algorithm (Uniform cost) : f(n) = the sum of edge costs from start to n

Uniform Cost Search

- Best first, where
 - f(n) = "cost from start to n"





Uniform-cost search

• Complete:

• Yes, if step cost $\geq \epsilon$

• Time:

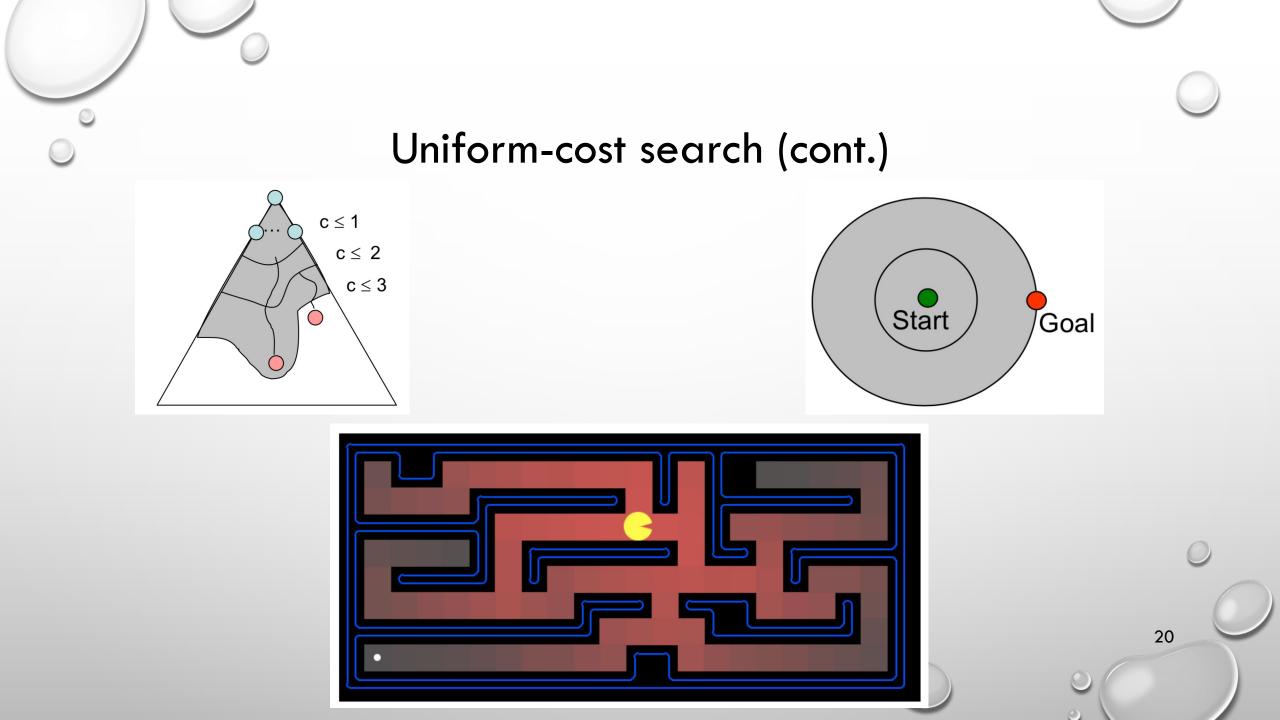
of nodes with f ≤ cost of optimal solution, O(b^[C*/ε]) where C^{*} is the cost of the optimal solution

• Space:

• # of nodes with $f \leq cost$ of optimal solution, $O(b^{[C*/\epsilon]})$

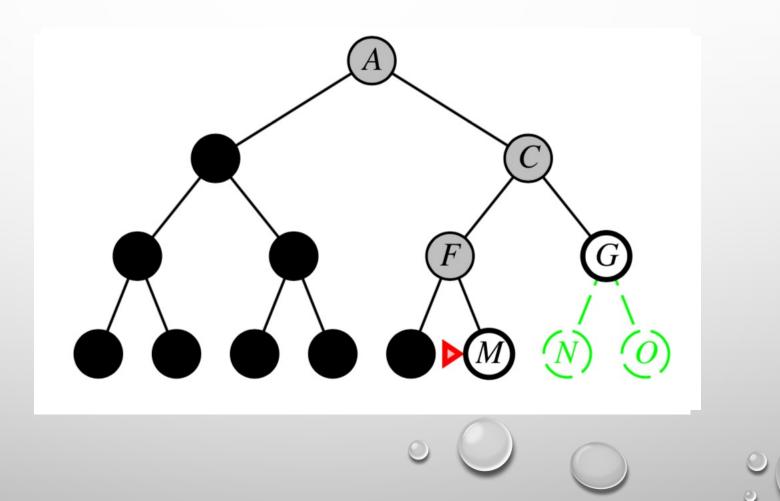
• Optimal:

- Yes—nodes expanded in increasing order of f(n)
- Caveat: Explores options in every "direction" (No information about goal location)



Depth-first search

• Expand deepest unexpanded node



Properties of depth-first search

• Complete:

 No: fails in infinite-depth spaces, spaces with loops. Modify to avoid repeated states along path

START

а

b

GOAL

22

• \Rightarrow complete in finite spaces

• Time:

- $O(b^m)$: terrible if *m* is much larger than *d*
- but if solutions are dense, may be much faster than breadth-first

• Space:

• O(bm), i.e., linear space!

• Optimal:

• No

Combining BFS and DFS?

- DFS is efficient in space complexity
- BFS is better in time complexity
- How can we combine strength of both in a method?

Depth-limited search

= depth-first search with depth limit I, i.e., nodes at depth I have no successors

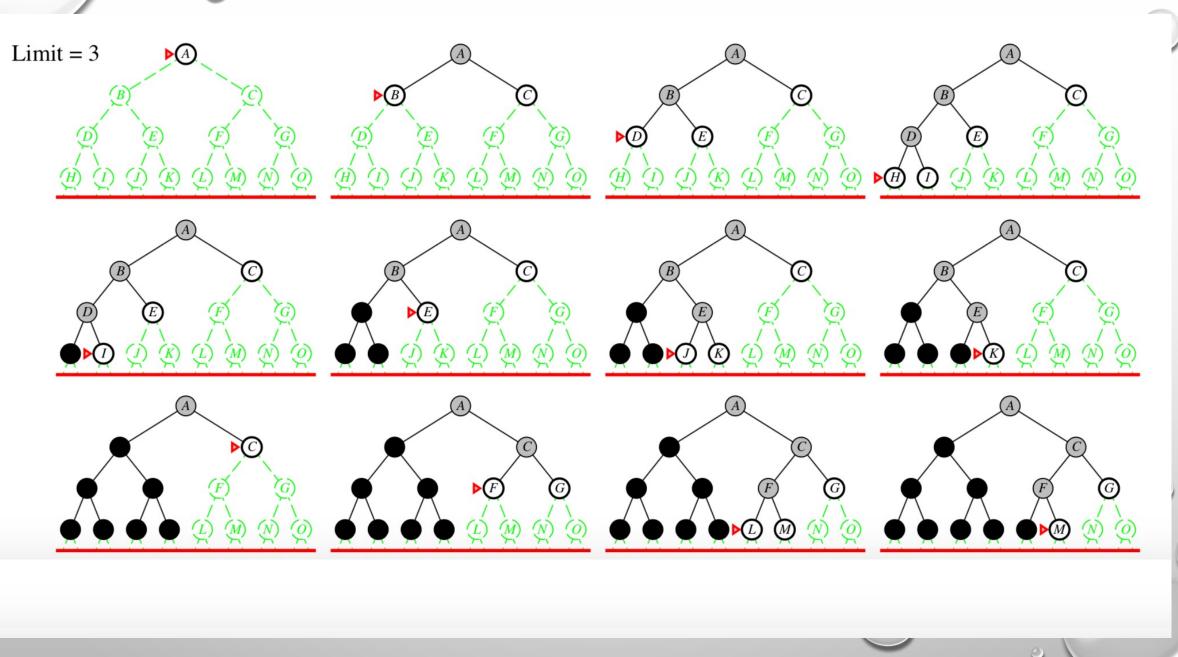
function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail/cutoff RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit) function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff cutoff- $occurred? \leftarrow false$ if GOAL-TEST(*problem*, STATE[*node*]) then return *node* **else if** DEPTH[*node*] = *limit* **then return** *cutoff* else for each successor in EXPAND(node, problem) do *result* \leftarrow RECURSIVE-DLS(*successor*, *problem*, *limit*) if result = cutoff then cutoff-occurred? \leftarrow true else if $result \neq failure$ then return resultif cutoff-occurred? then return cutoff else return failure

Iterative deepening search (cont.)

 Gradually increasing the limit in depth-limited search, until the solution is found:

```
function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution
inputs: problem, a problem
for depth ← 0 to ∞ do
    result ← DEPTH-LIMITED-SEARCH( problem, depth)
    if result ≠ cutoff then return result
end
```


Iterative deepening search (cont.)



Properties of iterative deepening search

27

• Complete:

• Yes

• Time:

- $(d+1)b^0 + db^1 + (d-1)b^2 + ... + b^d = O(b^d)$
- or more precisely $O(b^d(1 1/b)^{-2})$

• Space:

• O(bd)

• Optimal:

- Yes, if step cost = 1
- Can be modified to explore uniform-cost tree

Properties of iterative deepening search (cont.)

- Numerical comparison for b = 10 and d = 5, solution at far right leaf: N(IDS) = 6+50+400+3,000+20,000+100,000=123,456N(BFS) = 10+100+1,000+10,000+100,000+999,990=1,111,100
- IDS does better because other nodes at depth d are not expanded
- BFS can be modified to apply goal test when a node is generated

Cost of iterative deepening

b	ratio ID to DFS		
2	3		
3	2		
5	1.5		
10	1.2		
25	1.08		
100	1.02		

Speed on various benchmarks

	BFS <mark>Nodes</mark> Time		Iter. D <mark>Nodes</mark>				
8 Puzzle	10 ⁵	.01 sec	10 ⁵	.01 sec			
2x2x2 Rubik's	10 ⁶	.2 sec	10 ⁶	.2 sec			
15 Puzzle	10 ¹³	6 days 1Mx	10 ¹⁷	20k yrs			
3x3x3 Rubik's	10 ¹⁹	68k yrs <mark>8</mark> x	10 ²⁰	574k yrs			
24 Puzzle	10 ²⁵	12B yrs	10 ³⁷	10 ²³ yrs			
Why the difference?							
Rubik has higher branch factor # of duplicates 15 puzzle has greater depth							

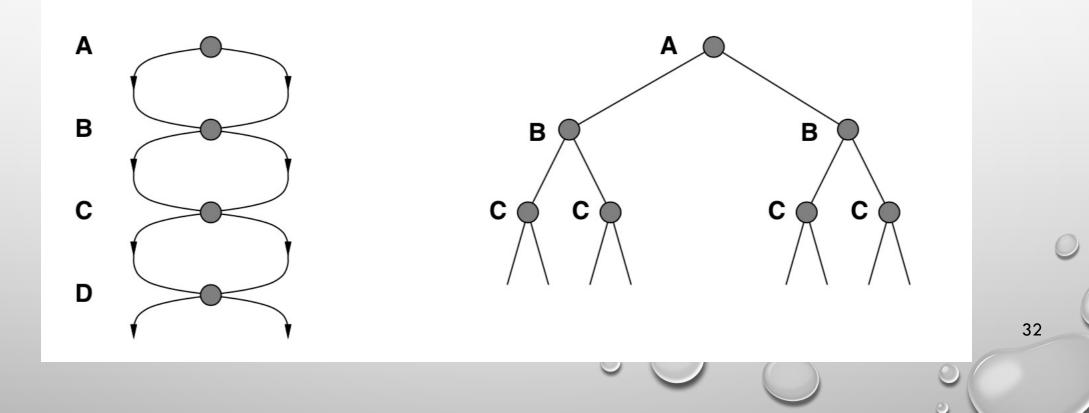
30

Summary of algorithms

Criterion	Breadth-	Uniform-	Depth-	Depth-	Iterative
	First	Cost	First	Limited	Deepening
Complete?	Yes*	Yes*	No	Yes, if $l \geq d$	Yes
Time	b^{d+1}	$b^{\lceil C^*/\epsilon \rceil}$	b^m	b^l	b^d
Space	b^{d+1}	$b^{\lceil C^*/\epsilon \rceil}$	bm	bl	bd
Optimal?	Yes^*	Yes	No	No	Yes*

Repeated states

 Failure to detect repeated states can turn a linear problem into an exponential one!



Graph Search

function GRAPH-SEARCH (problem, fringe) returns a solution, or failure

 $\mathit{closed} \gets \texttt{an empty set}$

 $fringe \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[problem]), fringe)$ loop do

 $\begin{array}{l} \textbf{if } \textit{fringe is empty then return failure} \\ \textit{node} \leftarrow \text{REMOVE-FRONT}(\textit{fringe}) \\ \textbf{if } \text{GOAL-TEST}(\textit{problem}, \text{STATE}[\textit{node}]) \textbf{ then return } \textit{node} \\ \textbf{if } \text{STATE}[\textit{node}] \textbf{ is not in } \textit{closed } \textbf{ then} \\ \quad \text{add } \text{STATE}[\textit{node}] \textbf{ to } \textit{closed} \end{array}$

 $fringe \leftarrow \text{INSERTALL}(\text{EXPAND}(node, problem), fringe)$

end

Graph Search (cont.)

- On small problems
 - Graph search almost always better than tree search
- Implement your closed list as a dict. or set!
- On many real problems
 - Storage space is a huge concern.
 - Graph search impractical