-4 B

'
N’

Artificial Intelligence
CE-417, Group 1
Computer Eng. Department
Sharif University of Technology

Spring 2024

By Mohammad Hossein Rohban, Ph.D. —/ —

Courtesy: Most slides are adopted from CSE-57Z3 (Washington U.)Yoriginal
slides for the textbook, and CS-188 (UC. Berkeley).
"/ |

N’ .

Problem Space and Uninformed Search

e Problem solving agents

S

* On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

* Formulate goal: be in Bucharest

* Formulate problem:
* states: various cities

* actions: drive between cities

* Find solution: sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

7 N Nt

N’

Problem solving agents (cont.)

] Oradea

Neamt

49

Arad[]

Sibiu) Fagaras

118

Vaslui
80
Timisoara lenlcu Vilcea
. . 211
111 9 Lugoj Pitesti
N
70 08 g
_ 35 = _ Hirsova
[dMehadia 101 S rziceni
() 86
2 138 Bucharest
Dobreta [120 -~
ICraiova Eforie

[1Giurgiu

\/ Another example: vacuum world

v (Pl 1 F
e T D U 1 T [0
ELLLEL

* States: integer dirt and robot locations (ignore dirt amounts etc.)
* Actions: Left, Right, Suck, NoOp
* Goal test: no dirt

* Path cost: 1 per action (O for NoOp)

o/

Another example: The 8-puzzle

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

* States: integer locations of tiles (ignore intermediate positions)

* Actions: move blank left, right, up, down (ignore unjamming etc.)
* Goal test: = goal state (given)

* Path cost: 1 per move

* [Note: optimal solution of n-Puzzle family is NP-hard]/

\/ Tree Search Algorithms

-

* Basic idea:
p—
offline, simulated exploration of state space

by generating successors of already-explored states

(a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strateqy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

A
-} Search Tree Example
*_Arad
Sibiu Climisoara>

T R R R T

w—rl Search Tree

* A search tree:

“N”, 1.0 “‘E”, 1.0
* Start state at the root node / \

Children correspond to successors u !

Nodes contain states, correspond to PLANS to those states /1\ /1\

Edges are labeled with actions and costs

For most problems, we can never actually build the whole tree

States vs. Nodes
-\/Verﬁces in state space graphs are problem states

—/ * Represent an abstracted state of the world
* Have successors, can be goal / non-goal, have multiple predecessors
* Vertices in search trees (“Nodes”) are plans
* Contain a problem state and one parent, a path length, a depth, and a cost
* Represent a plan (sequence of actions) which results in the node’s state

* The same problem state may be achieved by multiple search tree nodes

Search Tree Nodes

Parent
.. Depth 5

Problem States

Action

Node Depth 6

=~ Search Strategies

< ¢ A strategy is defined by picking the order of node expansion

* Strategies are evaluated along the following dimensions:
* completeness: does it always find a solution if one exists?
* time complexity: number of nodes generated /expanded
* space complexity: maximum number of nodes in memory

* optimality: does it always find a least-cost solution?

* Time and space complexity are measured in terms of
* b: maximum branching factor of the search tree
* d: depth of the least-cost solution

* m: maximum depth of the state space (may be =)

— Search Strategies

S~

* Uninformed strategies use only the information available in the problem

definition

Breadth-first search

* Uniform-cost search

Depth-first search

* Depth-limited search

lterative deepening search

\/ — Breadth-first search

—

—/ * Expand shallowest unexpanded node

13

~—

Properties of breadth-first search <

* Complete:
* Yes (if b is finite)
* Time:
* 1+b+b2+b3+...+b%+b(b?—1)=0O(b9*!), i.e. exp. in d
* Space:
¢ O(b¥"") (keeps every node in memory)
* Optimal:

* Yes (if cost = 1 per step); not optimal in general

* Space is the big problem; can easily generate nodes at 1T00MB /sec so 24hrs |
= 8640GB. o

YN (U e)

Costs on Actions

* Obijective: Path with smallest overall cost

* BFS will return shortest path in terms of number of transitions

* It doesn’t find the least cost path. > oV ,

Best-first search

e Generalization of breadth-first search

* Cost function f(n) applied to each node
* Breadth-first search : f(n) = depth(n)

* Dijkstra’s Algorithm (Uniform cost) : f(n) = the sum of edge costs from start to n

o/

7

S

* Best first, where

—

Uniform Cost Search

f(n) = “cost from start to n”

aka “Dijkstra’s Algorithm”

Uni

Expansion ord
S, p,d b, e a

form Cost Search (cont.)

er.
L1, e|G

Cost
contours
(not all shown)

o 17 11
-
CHASO IR

a
w

p q (F)8 q C G
| N |
q 11 ©)10 e

18
a

=~ if h
> Uniform-cost searc

- * Complete:

S—

* Yes, if step cost > €
* Time:
* # of nodes with f < cost of optimal solution, O(b/“*/€l) where C* is the cost of the
optimal solution
* Space:

* # of nodes with f < cost of optimal solution, O(bl<*/€])

* Optimal:

* Yes—nodes expanded in increasing order of f(n)

* Caveat: Explores options in every “direction” (No information about goal

location)

YN (U >

Uniform-cost search (cont.)

S~

Depth-first search

~—r

* Expand deepest unexpanded node

=

S—

\/ ~—"

= Properties of depth-first search *

* Complete:

* No: fails in infinite-depth spaces, spaces with loops. Modify to avoid repeated states

along path
* = complete in finite spaces
* Time: / \
* O(b™): terrible if m is much larger than d 6
* but if solutions are dense, may be much faster than breadth-first
* Space:

* O(bm), i.e., linear space! °

* Optimal:
22 \/

* No

\—/ Combining BFS and DFS?

e

N’

* DFS is efficient in space complexity
* BFS is better in time complexity

* How can we combine strength of both in a method?

o/ 4

\/ . Depth-limited search
4

~ = depth-first search with depth limit |, i.e., nodes at depth | have no successors
N’

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln /fail /cutoff
cutoff-occurred? < false
if GOAL-TEST(problem, STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result «— RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result </

24

A= R)

if cutoff-occurred? then return cutoff else return failure

\

\/ lterative deepening search (cont.)

S’

—

* Gradually increasing the limit in depth-limited search, until the solution is

found:

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
inputs: problem, a problem

for depth«— 0 to oo do
result «—— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

end

/

Limit=3

s

40

lterative deepening search (cont.)

\'/ ° ° ° °
Properties of iterative deepening search

< * Complete:

g

* Yes
* Time:
* (d+1)b%+db! +(d—1)b2 +...+b9 =O(bd)
* or more precisely O(b%(1 — 1/b)?)
* Space:
* O(bd)
* Optimal:
* Yes, if step cost = 1

* Can be modified to explore uniform-cost tree

\/ roperties of iterative deepening search (cont.)

—

* Numerical comparison for b = 10 and d = 5, solution at far right leaf:
N(IDS) = 6+50+400+3,000+20,000+100,000=123,456
N(BFS) = 10+100+1,000+10,000+100,000+999,990=1,111,100

* IDS does better because other nodes at depth d are not expanded

* BFS can be modified to apply goal test when a node is generated

Cost of iterative deepening

b ratio ID to DFS
2 3
3 2
5 1.5
10 1.2
25 1.08
100 1.02

-~

—

\/J Speed on various benchmarks
BFS Iter. Deep.
Nodes Time Nodes Time
8 Puzzle 105 .01 sec 105 .01 sec
2x2x2 Rubik's 196 2 gec 106 .2 sec

15 Puzzle 103 6days 1mx 1017 20k yrs
3x3x3 Rubik's 101 68kyrs & 1020 574kyrs

24 Puzzle 102> 12B yrs 1037 102 yrs

Why the difference?

Rubik has higher branch factor # of duplicates
15 puzzle has greater depth

- 4

\/ Summary of algorithms

o N’

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes* Yes* No Yes, if | > d Yes
Time oL plC/e b b b
Space pi+1 plC /el bm bl bd
Optimal? Yes* Yes No No Yes*
31 \/

_/ N Repeated states

* Failure to detect repeated states can turn a linear problem into an exponential

onel

g

\/ < Graph Search

-

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe «— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node «— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node| is not in closed then
add STATE[node| to closed
fringe — INSERTALL(EXPAND(node, problem), fringe)
end

33

Graph Search (cont.)

* On small problems

* Graph search almost always better than tree search
* Implement your closed list as a dict. or set!

* On many real problems
* Storage space is a huge concern.

* Graph search impractical

